Modern programs are complicated structures, with hundreds to thousands of lines of code, but how do you efficiently move from smaller programs to more robust, complicated programs? How do data scientists simulate the randomness of real world problems in their programs? What techniques and best practices can you leverage to design pieces of software that can efficiently handle large amounts of data? In this course from Duke University, Python users will learn about how to create larger, multi-functional programs that can handle more complex tasks.



Designing Larger Python Programs for Data Science
Ce cours fait partie de Spécialisation Programming for Python Data Science: Principles to Practice



Instructeurs : Genevieve M. Lipp
Inclus avec
Expérience recommandée
Ce que vous apprendrez
How to plan program decomposition using top down design.
How to integrate discrete pieces of Python code into a larger, more functional, and complex program.
Compétences que vous acquerrez
- Catégorie : Software Engineering
- Catégorie : Software Development
- Catégorie : Computer Programming
- Catégorie : Object Oriented Programming (OOP)
- Catégorie : Sampling (Statistics)
- Catégorie : Computational Thinking
- Catégorie : Python Programming
- Catégorie : Program Development
- Catégorie : Statistical Methods
- Catégorie : Data Analysis
- Catégorie : Simulations
- Catégorie : Data Cleansing
- Catégorie : Data Science
- Catégorie : Integrated Development Environments
- Catégorie : Pandas (Python Package)
- Catégorie : Debugging
- Catégorie : Unit Testing
Détails à connaître

Ajouter à votre profil LinkedIn
1 devoir
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
This module, you’ll learn how to apply the concepts you’ve learned previously to analyze larger programs. Additionally, we’ll go through the process of program decomposition, to break up a complicated program into smaller steps that we can solve easier. After all of those pieces, we’ll put our pieces together in a programming assignment that combines a lot of the smaller programs we’ve created throughout the module.
Inclus
6 vidéos3 lectures4 devoirs de programmation
This Module, you’ll learn about Monte Carlo methods, which are a common technique we use to simulate a lot of possible outcomes. We’ll also introduce you to the Poker Project that you’ll be working on for the rest of the course. In this module we’ll focus on how we can write code to simulate different possible outcomes for a hand of poker, and the individual programming problems we’ll need to solve to make a complete poker simulation. You’ll create some of these smaller solutions in this module, and receive feedback on these individual pieces before we move onto synthesizing some of these parts together in the next module.
Inclus
1 vidéo2 lectures3 devoirs de programmation
This module, you will learn about writing test cases and debugging in a Python program, and apply it to your poker project! Additionally we’ll move forward to the logical evaluation part of the poker project, where you’ll write the code that will allow your program to decide what a winning hand would be, and use some data science techniques to help clean up the data generated by Monte Carlo methods. Similarly to the last unit, you’ll write these individual parts of the program and get feedback on those, before we move on to the next unit, where we’ll synthesize all of these pieces into a complete poker hand simulation.
Inclus
1 lecture1 devoir3 devoirs de programmation
This module, we’ll integrate all of the individual sections of Python code that we’ve written throughout the course into one larger program. This will likely require a bit of troubleshooting and forethought to get all of your previous bits of code working, but you will leverage the test cases and skills you learned in the previous module to accomplish this. We’ll also go over object references, a way that we can directly reference a piece of memory, to efficiently update the information that the various parts of your program will be using. After all of this, we’ll give feedback on your final poker project, and then we’ll ask you to do a short reflection on your poker project and the experience you had creating a larger program from its discrete components.
Inclus
1 vidéo2 lectures2 devoirs de programmation1 sujet de discussion
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Offert par
En savoir plus sur Software Development
- Statut : Essai gratuit
Duke University
- Statut : Essai gratuit
University of Colorado Boulder
- Statut : Prévisualisation
Ball State University
- Statut : Essai gratuit
Fractal Analytics
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,